
 

Theory of Mind Inspired Large Reasoning Language Model

Improved Multi-agent Reinforcement Learning Algorithm

for Robust and Adaptive Partner Modelling

Xiyun Li 1,2          Tielin Zhang 1,3,4          Chenghao Liu 1          Shuang Xu 1,3          Bo Xu 1,2,3

1 The Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation,

Chinese Academy of Sciences, Beijing 100190, China

2 School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China

3 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China

4 Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China

 
Abstract:   The cooperative multi-agent reinforcement learning (MARL) field has experienced remarkable progress. However, these
advanced  methods  still  face  substantial  challenges  in  real-world  applications.  A  significant  direction  for  improving  cooperative
MARL techniques and addressing existing challenges is robust and adaptive partner modelling. Reasoning about the beliefs of part-
ners, such as their intentions and behaviors, is crucial for partner modelling, which is known as the theory of mind (ToM) in cognit-
ive science.  In animals,  biological  ToM reasoning in the prefrontal  cortex (PFC) plays an important role in complex environment
survival before decision-making. However, the biological PFC is too complex to be directly incorporated into conventional artificial
neural networks (ANNs) in either functional or structural manners. Large reasoning language models (LRMs) have recently demon-
strated significant human-like reasoning abilities and impressive performance. Therefore, we propose an improved LRM framework
to simulate the PFC for robust and adaptive partner modelling. Despite the excellent performance of LRMs in various fields, their
ToM reasoning capabilities remain limited in complex MARL scenarios. Therefore, we further propose a ToM reasoner to enhance
the ToM reasoning abilities of LRMs. Our framework exhibits robustness and adaptability across various LRM sizes, improving the
ToM reasoning ability of agents and facilitating more effective partner modelling, thereby achieving higher performance scores in co-
operative benchmarks.
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 1   Introduction

Cooperative  multi-agent  reinforcement  learning

(MARL) has  attracted  considerable  attention  because  of

its  potential  to  coordinate  multiple  agents  to  achieve

common goals in complex environments[1–3]. However, co-

operative  MARL  scenarios  face  various  challenges,  such

as nonstationary and credit assignment challenges, requir-

ing  agents  to  break  symmetry  and  cooperate  efficiently.

Several MARL approaches[4–7] have been developed to ad-

dress  these  challenges.  However,  these  methods  overlook

partner  modelling  before  decision-making,  potentially

hindering their practical applications in terms of perform-

ance  and  scalability.  Therefore,  establishing  robust  and

adaptive  partner  modelling  for  the  MARL  algorithm  to

accurately predict and estimate the behaviors and inten-

tions of other agents is crucial for efficient cooperation.

Modelling  partners  in  cooperative  MARL  tasks  is  a

special case of opponent modelling[8–11], a crucial research

direction  in  multi-agent  systems  for  solving  the  non-sta-

tionarity challenge. Traditional opponent modelling meth-

ods include strategy reconstruction, type reasoning, inten-

tion recognition, recursive reasoning and other methods[8].

However, these approaches have drawbacks, including ad-

aptation  gaps,  complex  feature  engineering  and  insuffi-

cient  state-space  representation  capabilities.  Researchers

have  attempted  to  address  these  critical  challenges

through  explicit  partner  modelling.  Some  methods  con-
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struct  additional  behavior  models  to  simulate  partner

agents  involving  analyzing  opponents′ context  informa-

tion,  such  as  historical  trajectories,  to  characterize  their

behaviors and predict their actions[12, 13].  Although expli-

cit  partner  modelling  methods  can  model  partners  from

some perspectives, they often suffer from limited partner

reasoning,  interpretability  and  a  lack  of  interaction  cap-

abilities.

Large  language  models (LLMs),  such  as  GPT-4  and

GPT-o1[14],  have  recently  shown  expert-level  abilities

across  various  areas,  profoundly  influencing  people′s
lives[15–18].  This  development  has  spurred  interest  in

leveraging LLMs′ advanced reasoning capabilities to drive

innovation  and  accelerate  progress  in  various  fields,

from  code  generation[19, 20] to  human-like  autonomous

agents[21–24]. Recent studies have demonstrated that integ-

rating code datasets and chain-of-thought (CoT) prompt-

ing  significantly  enhances  the  reasoning  capabilities  of

LLMs[25, 26].  LLMs with strong reasoning capabilities  can

be  denoted  as  large  reasoning  language  models (LRMs).
In  this  work,  we  utilize  an  LRM  to  construct  a  robust

and adaptive partner modelling framework, enhancing the

partner  reasoning  ability  and  interpretability  of  MARL

methods.

The  biological  social  decision-making  model  is  one  of

the  most  critical  theories  in  neuroscience,  as  it  explains

why humans can achieve efficient social cooperation. This

model  comprises two key components:  intuitive decision-

making  driven  by  reinforcement  learning  and  reasoning

decision-making based on belief-based learning, which in-

volves anticipating the intentions and actions of others[27,

28]. Humans integrate values from intuitive decision-mak-

ing (e.g., goals) and beliefs from social reasoning (e.g., in-

tentions of others) to achieve efficient social decision-mak-

ing.  Research  indicates  that  belief-based  learning  is

primarily associated with the prefrontal cortex (PFC) re-
gion[29], making it crucial to construct a model that simu-

lates the belief-based learning mechanism in the PFC for

human-like partner reasoning.

The PFC plays a critical  role in belief-based learning

by performing mental reasoning, also known as theory of

mind (ToM).  Therefore,  we  develop  a  ToM  reasoning

module  to  simulate  the  PFC  for  partner  modelling.

ToM[30–33] is a crucial psychological concept that emphas-

izes  people′s  ability  to  understand  and  reason  about  the

goals,  intentions  and mental  states  of  others.  The incor-

poration of ToM into partner modelling in the cooperat-

ive MARL is a promising research direction that will  fa-

cilitate  efficient  collaboration.  Recent  computational

models of ToM have facilitated value alignment between

humans  and  agents[34] and  fostered  efficient  communica-

tion among multiple agents[35].

Inspired by the biological social decision-making mod-

el,  we  propose  a  biologically  plausible  LRM-improved

MARL (LRM-MARL) framework  to  further  enhance  ad-

aptive partner modelling and efficient cooperation. In our

framework,  we  propose  a  ToM reasoning  module  to  im-

prove  the  mental  reasoning  capabilities  of  the  LRM  for

cooperative MARL tasks. To validate the ToM ability of

our  framework,  we  have  conducted  diverse  experiments

on  the  basis  of  our  previous  work[36].  The  experimental

results demonstrate the effectiveness of our framework in

mental  reasoning  and  partner  modelling,  which  signific-

antly  enhances  competitive  MARL methods.  Our contri-

butions can be summarized as follows:

1) Inspired  by  the  biological  social  decision-making

model, we design a partner modelling LRM-MARL frame-

work. Our framework incorporates a ToM reasoner mod-

ule as the belief learning component for better ToM reas-

oning  ability,  which  comprises  an  information  extractor,

our LRM, and the LRM augmenting module (LAM).
2) Among  a  large  number  of  recently  developed

LRMs, we select CodeGen in our ToM reasoning module

to simulate the PFC. To validate the biological plausibil-

ity  of  our  ToM  reasoning  module  as  the  PFC,  we  con-

duct analyses from structural and functional perspectives

and construct diverse experiments for further verification.

3) The experimental results demonstrate that our pro-

posed partner modelling framework exhibits superior reas-

oning  capabilities  and  cooperative  performance  across

various maps, indicating that our framework can success-

fully explain the beliefs of partners and improve collabor-

ation efficiency in MARL cooperative tasks.

 2   Related works

 2.1   Cooperative multi-agent reinforce-

ment learning

Significant breakthroughs have been recently made in

cooperative  MARL,  facilitated  by  the  development  of

many  advanced  networks  and  MARL  techniques[4, 5, 7].

These  methods  are  commonly  categorized  into  two  cat-

egories:  value-based  methods  and  policy-based  methods.

Independent Q-learning (IQL)[37] extends the deep Q-net-

work (DQN) paradigm  to  cooperative  MARL,  which  in-

volves  the  interaction  between  two  learning  agents.  Q-

value  mixing (QMIX)[4],  a  value-based  approach,  integ-

rates  the  centralized  training  decentralized  execution

framework and a mixing network to estimate joint action

values  as  a  monotonic  combination  of  individual  agent

values.  The  actor-critic  method  counterfactual  multi-

agent policy gradient (COMA)[5] approaches the credit as-

signment challenge by leveraging counterfactual baselines.

Qtran[6] attempts  to  enhance  QMIX  by  alleviating  cer-

tain structural constraints. However, these methods over-

look  the  construction  of  ToM  models  for  other  agents,

which  are  crucial  for  inferring  their  intentions  and  pre-

dicting their subsequent actions.

 2.2   Partner modelling

Understanding  and  predicting  the  actions  and  inten-
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tions of partner agents is crucial for achieving efficient co-

operation  in  multi-agent  scenarios.  Some  existing  re-

search on partner modelling focuses on characterizing the

styles  and strategies  of  partners  and predicting their  ac-

tions in MARL scenarios. Recent work[9] utilizes the max-

imum entropy method for partner modelling. He et al.[10]

construct  an  additional  partner  modelling  module  to  es-

timate  the  q-tables  of  partner  agents.  Wen  et  al.[11]

propose  a  partner  modelling  method  through  multi-step

recursive  reasoning.  Inspired  by  cognitive  science,  Li

et  al.[12] predict  partner  styles  by  constructing  a  ToM

module, achieving efficient cooperation with unseen part-

ners  in  the  cooperative  overcooked  environment.  Wu

et  al.[38] focus  on  implicit  modelling  in  interactions  with

various opponents or partners. Nonetheless, in contrast to

the  ToM  cognitive  process  in  humans,  which  incorpor-

ates substantial common-sense world knowledge and task-

specific  prior  knowledge,  these  partner  modelling  mod-

ules do not consider such knowledge, limiting their effect-

iveness and interpretability.

 2.3   Large reasoning language model

The exponential growth of LRMs[14, 17] has profoundly

impacted  various  industries  to  address  challenging

tasks[15, 16, 18, 21, 22].  Some LRMs demonstrate  exceptional

reasoning skills in understanding intricate linguistic struc-

tures  and  making  accurate  decisions[25, 26].  These  reason-

ing  abilities  of  LRMs  can  be  elicited  through  the  CoT

prompting  equipment[26, 39] and  the  extensive  code  cor-

pora,  which  guide  the  model  in  thinking  step  by

step[19, 40].  While  existing LRMs demonstrate  exceptional

overall  abilities,  they  still  lack  sufficient  ToM  reasoning

capabilities for efficient collaboration[41], requiring the in-

tegration of various cognitive skills. Our research aims to

design a framework to enhance the ToM reasoning capab-

ilities  of  existing  LRMs  for  partner  modelling  in  multi-

agent tasks, achieving efficient cooperation among agents.

 2.4   Theory of mind in MARL

ToM[30, 42, 43] is  a  crucial  cognitive  ability  that  allows

individuals  to  perceive,  comprehend  and  attribute  unob-

servable  mental  states  of  others,  such  as  thoughts,  de-

sires and emotions[31–33, 43]. The ToM ability facilitates so-

cial  interactions,  communication,  empathy,  self-aware-

ness  and  moral  reasoning,  fostering  human  accomplish-

ments.  Therefore,  researchers have endeavoured to equip

AI agents with ToM capabilities to address critical chal-

lenges in MARL, such as low sample efficiency and poor

generalizability[34, 35, 44, 45]. The ToM module predicts the

values and intents of human users based on their instruc-

tions  and  feedback  for  effective  bidirectional  human-ro-

bot  communications[34].  Wang  et  al.[35] utilize  the  ToM

module  to  anticipate  the  priority  of  communication

between agents, achieving more efficient agent communic-

ation  and  cooperation.  By  leveraging  the  historical  tra-

jectory data of other agents, agents with ToM capabilit-

ies can forecast their subsequent trajectories[44]. Some re-

searchers  constructed  mental  models  for  the  human-ro-

bot  teaming[45].  In  contrast  to  previous  works,  our  work

focuses  primarily  on  the  reasoning  aspect  of  ToM.

Through  our  ToM  reasoning  module,  agents  can  reason

and  infer  the  intentions,  goals  and  actions  of  other

agents, thereby facilitating efficient collaboration.

 3   Methodology

 3.1   Problem definition

(

O,A,P,R,M,Q, γ, ρi
)

O

A

a = (a1, a2)

o = (o1, o2)

P

P : O ×A → O

R : O ×A → R

In  cooperative  multi-agent  problems,  a  2-player

Markov  decision  process  can  be  defined  as  a  tuple

,  where  represents  the  obser-

vation space and  represents the action space shared by

both the ego and partner agents. The joint action for the

ego  and  partner  agents  can  be  denoted  by ,

whereas  the  joint  observation  can  be  represented  as

 consisting  of  the  ego  and  partner  observa-

tions.  defines  the  environment  transition  probability

function . In our experiment, the ego and

partner agents share the same structure and reward func-

tion. The reward function  is the same for

all the agents.

M

t Q

γ ∈ [0, 1)

t

o1t ∈ O

q1t ∈ Q M

a1
t ∈ A ρ1 : O×

A → [0, 1] a1
t = ρ1

(

· | o1t , q
1
t

)

a2
t = ρ2

(

· | o2t , q
2
t

)

ot+1

P (ot+1 | ot,at)

rt+1
∑

t

γ
t
r(ot,at)

The ToM reasoner model  can reason for the part-

ner  agent  on the basis  of  the historical  context  informa-

tion of the partner agent and observation information at

the current time step .  denotes the partner reasoning

space and   is the discount factor used for future

rewards. At time step , the ego agent perceives environ-

mental observation  and obtains the ToM partner

reasoning  from  the  ToM  reasoner ,  taking

action  drawn  from  the  ego  policy 

,  denoted  as .  The  partner

policy can be denoted as . The ego and

partner agents transit  to the next state  with prob-

ability ,  receiving  a  numerical  reward

 from the environment. Agents aim to maximize the

cumulative discounted return  via efficient

collaboration.  The  detailed  model  structure  is  presented

in Section 3.3.

 3.2   Biological decision-making structure

The social decision-making model in neuroscience sug-

gests  that  human  decision-making  predominantly  relies

on  two  mechanisms:  intuitive  decision-making,  which  is

based  on  reinforcement  learning  through  trial  and  error,

and  ToM  reasoning  decision-making,  which  is  based  on

belief  learning  and  involves  predicting  and  anticipating

the actions of others[27, 28, 46–48]. To refine these two mech-

anisms,  we  summarized  a  biological  decision-making
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structure in the brain based on analysis from relevant in-

terdisciplinary  papers[49–52],  as  depicted  in Fig. 1.  The

structure comprises two distinct pathways[46–48]: an intuit-

ive decision-making pathway and a ToM reasoning path-

way. The intuitive pathway forms a fast decision-making

system,  including  the  sensory  region  and  basal  ganglia

(BG). The ToM reasoning pathway, which forms the slow

decision-making system, involves cooperation among mul-

tiple brain areas, including the sensory region, BG, medi-

al  prefrontal  cortex (mPFC) and  dorsolateral  prefrontal

cortex (dlPFC)[49, 50].

The sensory region in the brain plays a critical role in

processing  environmental  observations  and  extracting

crucial features, which is fundamental for ToM reasoning

and decision-making.  This  region  processes  environment-

al  observations  and transmits  essential  encoded informa-

tion to the PFC, an important area in cognitive control,

with the ability to orchestrate thought and action accord-

ing to the goals[52]. The mPFC area in the PFC is crucial

for  interpreting environmental  cues  and constructing the

reasoning representations of others[51, 52]. The mPFC then

translates this sensory input into ToM reasoning, which is

conveyed to the dlPFC. The dlPFC refines this input and

plays  a  supramodal  role  in  various  executive  functions,

including  attention  selection,  working  memory,  intricate

partner reasoning and belief-making. It can adapt to en-

vironmental  changes,  collaborating  with  other  regions  to

increase decision-making efficiency[53]. Therefore, the dlP-

FC maintains strong connections with the mPFC and the

BG,  which  is  crucial  for  modulating  mental  representa-

tion and generating partner state-action reasoning for de-

cision-making  processes[54].  Finally,  partner  reasoning

reaches the BG, which comprises some subcortical nuclei

essential for regulating motor and cognitive functions, in-

cluding  attention  and  decision-making[49, 50, 55].  These

brain  regions  dynamically  interact  within  human  cogni-

tion to manage input information, facilitate ToM reason-

ing and make decisions.

 3.3   LRM-improved MARL framework

Inspired  by  the  biological  decision-making  structure

depicted  in Fig. 1,  we  have  developed  our  LRM-MARL

framework to  enhance  ToM reasoning  and facilitate  effi-

cient  collaboration  on  the  basis  of  our  previous  work[36].

As  illustrated  in Fig. 2,  our  proposed  framework  com-

prises two core modules: An MARL module for decision-

making,  which  mirrors  the  intuitive  decision-making

pathway in the biological  decision-making structure,  and

a partner modelling ToM reasoning module (ToM reason-

er) based  on  the  LRM  for  belief  learning,  which  simu-

lates  the  ToM reasoning  pathway.  This  framework  aims

to enhance the ToM ability of agents in the decision-mak-

ing  process  by  combining  the  strengths  of  intuitive  de-

cision-making and ToM reasoning.

oit

eit oit

eit

As shown in Fig. 2,  our  framework utilizes  the  obser-

vation encoder to preprocess and gather information from

environmental  observations  to  generate  the  environ-

ment  embedding .  The  observation  of  agents  com-

prises  the  information  of  each  grid  node  within  the  vis-

ible range of agents, including the positions of agents, as

well  as  observable  features  such  as  keys,  locks  and  di-

verse  terrains.  As  shown  in (1),  we  have  developed  the

ToM reasoner as a partner modelling module, with envir-

onment embedding  as  its  input.  The MARL compon-

ent  in  our  framework  can  employ  various  MARL  meth-

ods,  including  both  value-based  and  policy-based  ap-

proaches,  such  as  QMIX  and  COMA.  As  shown  in (2),
the partner modelling in our ToM reasoner component in-

cludes  three  stages:  extracting information,  ToM reason-

 

dlPFC

mPFC

BG

Sensory

Action

Observation

Reward

 
Fig. 1     The biological  decision-making structure,  including an intuitive  decision-making pathway (orange) and a ToM reasoning
pathway (purple). The green and red pathways represent the interaction process between the human and the environment, and the
environmental  reward  feedback,  respectively. (Colored  figure  is  available  in  the  online  version  at https://link.springer.com/
journal/11633)
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ing and partner reasoning in the cooperative MARL scen-

arios.  It  comprises  an  information  extractor,  the  LRM,

and an LRM augmenting module (LAM).

c−i

t

eit

pit

In our ToM reasoning module, the first stage involves

information extraction by an information extractor, which

is composed of three parts.  First,  a template-based com-

ment generation function serves as the knowledge select-

or, utilizing the partner context  and environment em-

bedding  to  generate  the  knowledge  template  format-

ted as code comments as output. The second part of the

information extractor  uses  a code LLM to generate code

reasoning,  enhancing  the  ToM  reasoning  capabilities  of

our  framework.  In  the  third  part,  we  integrate  these

knowledge  templates  with  the  code-form  reasoning  and

the latest ToM reasoning from the memory to construct a

structured prompt  in the prompt generator. As shown

in Fig. 3,  our  knowledge  template  includes  the  environ-

mental descriptions and the rules of our cooperative task.

Observation encoding : eit = Embed(oit)
Partner modelling : qit = ToMpartner(e

i

t, c
−i

t−1, l
i

t−1)

Action selection : ai

t = ρ
i(oit, q

i

t). (1)

pit

lit

Our proposed ToM reasoner component in our frame-

work uses LRM to understand the last action of the part-

ner and achieve ToM reasoning for the beliefs of the part-

ner in the second stage, which is crucial for improving the

ToM  reasoning  ability  and  partner  modelling  of  agents

and achieving more efficient cooperation. The LRM takes

 as  input  and  generates  the  comprehensive  ToM reas-

oning representation , an embedding vector incorporat-

ing partner reasoning. By using this LRM, we can gener-

ate  an  interpretable  textual  output  for  the  partner  and

environment.

Extracting information : pit = fmPFC(e
i

t, c
−i

t−1, l
i

t−1)

ToM reasoning : lit = fPFC(p
i

t)

Partner reasoning : qit = fdlPFC(l
i

t, c
−i

t−1). (2)

lit

lit

c−i

t

qit qit

oit

To  bridge  the  gap  between  the  semantic  space  of

LRM and the state-action space in MARL, we introduce

an additional LAM module in the third stage. The LAM

module contains two pathways, mapping the ToM repres-

entation  to the partner state and action space, respect-

ively. Input of the LAM includes  and the partner con-

text  from  memory,  and  the  output  is  the  partner

reasoning representation .  We concatenate  with the

environmental  observation  as  input  to  the  MARL

methods for the decision-making process.

 3.4   Biologically plausible ToM reasoner

Existing research underscores the pivotal role of code

in enhancing the reasoning abilities of LRMs[26, 39]. There-

fore,  we  choose  Codegen,  a  code  corpus-based  language

model[20], to simulate the mPFC in our proposed partner

modelling  ToM  reasoner  module.  Codegen  represents  a

significant  advancement  in  program  synthesis  LLMs[20],

which is  trained on both natural  language and program-

ming  language  data,  and  open-sourcing  the  training  lib-

rary JAXFORMER. Our partner modelling ToM reason-

er  module  employs  a  transformer-based  architecture  to
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Fig. 2     Our  proposed  LRM-MARL  framework  is  inspired  by  the  biological  decision-making  structure,  comprising  an  intuitive
decision-making pathway based on the MARL module and a ToM reasoner for partner belief learning. The ToM reasoner for partner
modelling  consists  of  three  stages:  extracting  information,  rethinking  results  and  ToM  reasoning,  and  partner  reasoning.  These
stages are completed through an information extractor module, the LRM model and the LRM augmenting module.
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achieve  high-quality  understanding  and  reasoning  from

natural language prompts.

In Section 4,  we demonstrate  the biological  plausibil-

ity  of  the  ToM  reasoner  to  simulate  PFC  reasoning  by

analyzing the multiscale similarity between the PFC and

our  ToM reasoner.  We  first  validate  the  similarity  from

both  structural  and  functional  perspectives,  followed  by

multiscale experiments for further validation.

From a structural  standpoint,  the PFC comprises  in-

terlaminar  mini-columns[56],  a  configuration  correspond-

ing  to  the  multi-layered  structure  inherent  to  the  trans-

former  architecture  within  the  ToM  reasoner.  Similarly,

recent  research[57] has  proposed  that  PFC  regions  can

make  probabilistic  inferences  about  the  reliability  of  the

current  behavioral  strategy  and  several  alternative

strategies,  thus  deciding  whether  to  exploit  the  existing

strategy  or  explore  new  strategies.  Furthermore,  it  has

been shown[58] that the PFC is vital for verbal analogical

reasoning, and other research[56] has highlighted its role in

the executive control  of  task-related target  selection and

decision-making  during  a  visuomotor  delayed  match  to

sample (DMS) task. Therefore, the PFC is crucial for so-

cial  reasoning and decision-making,  a  function similar  to

the  robust  ToM  and  reasoning  capabilities  exhibited  by

our proposed ToM reasoner.

Our  comprehensive  analysis  demonstrates  the

multiscale similarity and striking equivalence between the

PFC and the ToM reasoner, indicating that the biologic-

ally plausible ToM reasoner can serve as a PFC in facilit-

ating human-like cooperation and decision-making among

agents.  Furthermore,  the  multiscale  similarities  between

the transformer structure in the ToM reasoner and inter-

laminar mini-columns in the PFC suggest  that the com-

putational  experiments  of  our  framework  provide  in-

sights  into  human  cognitive  processes.  In  Section  4,  we

will  further  validate  the  biological  plausibility  through

two  experimental  scales:  cognitive  tests  and  cooperative

MARL tasks. In the scale-1 experiment, we construct cog-

nitive tests, including logical and ToM reasoning tests, to

evaluate  the  reasoning  ability  of  our  proposed  ToM

reasoner.  In  the  scale-2  experiment,  we  introduce  a  new

collaborative  MARL  environment,  Reason,  to  verify  our

framework  for  partner  modelling  and  efficient  collabora-

tion.

 4   Experiments

 4.1   Cognitive test of ToM reasoner

In  Section  4,  we  designed  multiscale  experiments  to

evaluate  our  proposed  partner  modelling  framework.  In

the scale-1 experiment, we construct cognitive tests com-

prising  logical  and  ToM reasoning  questions  to  evaluate

the reasoning ability of our ToM reasoner. In the scale-2

experiment, we introduce a new collaborative MARL en-

vironment  called  Reason  to  verify  our  framework  for

partner modelling and efficient collaboration.

As shown in Figs. 4 and 5,  we have developed a cog-

nitive  test  for  our  scale-1  experiment  to  verify  the

multiscale  similarity  between  the  PFC  and  our  ToM

reasoner  from  the  perspectives  of  both  logical  and  ToM

reasoning on the basis of relevant datasets from previous

work[59].  The  logical  reasoning  part  spans  different  diffi-

culty  levels  and  contains  intelligence  test  questions  re-

lated to mathematical reasoning and pattern recognition.

 

Prompt

# Assuming you are a helpful AI assistant with theory of mind ability. Your advanced capabilities enable you to process and 

understand the cooperative task rules, environmental state, partner context information, and other relevant information for 

achieving ToM reasoning and partner modeling about your partner. Now you can assist the policy of ego agent for making 

the optimal action.

# <$environment_introduction$>:

# Environment information: There are an ego agent, a partner agent, keys, locks, bandits, an explosive, and a hostage goal 

in our cooperative task. Terrain variations comprise standard areas, rock obstacles, and cactus areas. Each agent can select 

from five actions: up, down, left, right, stay, denoted by the numerical values 0−4, respectively: 0-down, 1-up, 2-left, 3-right, 
4-stay. 
# Environment rule: The primary objective of agents is to: reach the hostage location and liberate the hostage in the camp 

of bandit criminals. Now this is a big version with a 5×5 grid layout. The ego agent and partner agent do not know the 

location of the explosive, and reaching it simultaneously is unfeasible. Different terrains have different speeds. The faster the 

ego agent and partner agent reach the target point simultaneously, the higher the reward will be.

# <$current_observation$>:

# Initialize a zero matrix for the bandit camp, denoted as 5×5 grids g 

# The grid cell with the hostage in the matrix will be assigned a value of 1 and the hostage location is in the position [4,2]. 
The ego agent grid cell in the matrix will be assigned a value of 2, and the partner agent grid cell in the matrix will be 
assigned a value of 3. 
g = np.zeros((5, 5)), g[4, 2] = 1

···

 
Fig. 3     A prompt example, which is a textual description of the environment generated by the prompt extractor at stage one. The
prompt generator combines the knowledge template with the code reasoning as the output of the prompt extractor. The highlighted
part represents the code reasoning from the code LLM, whereas the other part represents the knowledge template of the knowledge
selector.
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The  ToM  reasoning  part  in  our  cognitive  tests  includes

several  standard  cognitive  tests,  such  as  false  belief

tasks[59, 60], which verify the ToM ability of ToM reason-

ing to understand other agents.

The  false  belief  test,  also  known  as  the  Sally-Anne

test[61], is a commonly used standard tool in cognitive sci-

ence  for  examining  the  development  of  children′s  ToM

through their  prediction  of  other  people′s  beliefs.  In  this

test,  the  researcher  presents  two  dolls  to  the  children,

Sally (beside a basket) and Anne (beside a box). Sally put

a small ball into the basket, covered it with a cloth, and

then Sally left. After Sally left, Anne took the ball out of

the basket and put it in the box beside her. After a while

Sally  came  back.  At  this  time,  the  researcher  asked  the

children, “where will Sally go to find the ball?” This task

tests  the  children′s  ability  in  belief  reasoning.  In  cognit-

ive  science,  belief  reasoning  is  a  crucial  component  of

ToM reasoning ability, which is the core ability for part-

ner  modelling.  Therefore,  we  can  verify  the  ToM ability

of our ToM reasoner via the false belief test.

The ToM reasoner in our proposed partner modelling

framework  completes  our  cognitive  tests,  which  demon-

strate logical reasoning and strong ToM ability. Some re-

search[62] in  the  field  of  cognitive  science  has  indicated

that a close link between the mPFC and the dlPFC with

the false belief test. Researcher[62] has led to an fMRI ex-

periment  to  verify  and explore  this  relationship,  indicat-

ing the important role of the PFC in stimulus-independ-

ent mental processes during false belief reasoning, facilit-

ating the shift in attention between stimulus-oriented and

stimulus-independent mental processes. Therefore, our ex-

perimental results further validate the multiscale similar-

ity between the ToM reasoner and the PFC. In the scale-

2  experiment,  we  apply  our  proposed  partner  modelling

framework  to  cooperative  MARL  tasks,  simulating  the

PFC  in  the  biological  decision-making  structure  to  en-

hance the ToM reasoning abilities of agents.

 4.2   Reason environment

As illustrated in Fig. 6, we present our cooperative en-

vironment in the scale-2 experiment,  Reason,  comprising

rock  obstacles,  a  target  hostage  location,  some  bandits,

an explosive zone and two agents. In the Reason environ-

ment, the agents need to reason and collaboratively com-

plete a series of  subtasks to rescue the hostage from the

bandits as quickly as possible. Their tasks involve navig-

ating  through  an  explosive  zone,  avoiding  bandits  and

dangerous obstacles, and collecting keys to unlock to res-

cue the hostage. The action space for the two agents in-

cludes five distinct actions: moving upwards, downwards,

leftwards,  rightwards,  and remaining stationary. The en-

vironmental  observation  comprises  all  observable  grids,

with each grid represented by a high-dimensional embed-

ding vector.

To evaluate the adaptability of our partner modelling

LRM-MARL framework across various scenarios, we have

constructed  various  maps  with  different  settings,  repres-

enting  distinct  complexity  levels.  Within  the  expansive

large-scale  map  of  our  environment,  we  incorporate

 

ToM reasoning test − false location belief 

# Sadie likes it when her dog stays in the house while she is away.

# Thus, she locks her dog in the house before going on a trip. When Sadie is gone, her dad comes home.

# Dad does not like it when the dog is locked in the house, so he takes it outside and locks it in the garage instead. 

# Sadie thinks that the dog is in the___: # The dog is in the ___:

# Sadie thinks that the dog is in the house. # The dog is in the garage when dad comes back.

# On the table, there is a bottle. It is full of soda; there is no juice in it.

# But the label on this bottle says “juice” and not “soda”.

# Alice enters the room and notices the bottle. She has never seen it before. She reads the label.

# She believes that the bottle is full of ___: # She calls her friend to tell them that she has just found a bottle full of ___: 

# She believes that the bottle is full of juice. # She calls her friend to tell them that she has just found a bottle full of juice.

ToM reasoning test − false content belief 

 
Fig. 4     Examples  of  the  false  belief  tests:  the  false  location  test  and  the  false  content  test.  Each  false  belief  test  in  our  ToM
reasoning tests comprises two questions from distinct viewpoints, necessitating accurate responses to all the questions for successful
completion. In these examples, the highlighted portions in green and red denote the questions and responses generated by our ToM
reasoner,  indicating  its  ToM  reasoning  ability. (Colored  figures  are  available  in  the  online  version  at
https://link.springer.com/journal/11633)

 

Logic test

# There are three variables a, b and c

What is the relationship between a and c?

# a > c

Logic test

# There are some grid, the grid 1 has 1 apple, and the grid 2 

has 2 apples, what about the grid 3?

# The grid 3 has 3 apples.

# a > b and b > c

 
Fig. 5     Examples  of  logic  reasoning  tests  in  our  cognitive  tests.  The highlighted  section represents  the  output  of  the  ToM
reasoner, whereas the white section represents the question for the ToM reasoner.
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broader  spatial  dimensions,  increased  obstacle  and  ban-

dit  density,  and more  terrain  types  to  evaluate  our  pro-

posed framework′s reasoning capabilities comprehensively.

The  explosive  zone:  To  prevent  the  agents  from

rescuing  hostages,  the  bandits  place  weight-sensitive  ex-

plosives  at  undisclosed locations  unknown to  the  agents.

The  explosives  are  triggered  when  two  agents  simultan-

eously arrive at  the explosive′s  location.  As the observa-

tional data of agents do not include specific details about

the  explosives,  such  as  their  exact  positions,  they  must

explore  and  collaborate  effectively  to  navigate  through

these  explosive  zones.  If  the  explosives  are  triggered,

agents will return to their starting positions and penalize

them.  Therefore,  strong  collaboration  is  essential  for  the

agents to reach the hostage location successfully.

The obstacles and the bandit zones: In this task,

agents  are  prohibited  from  entering  areas  with  rock

obstacles.  Entering  the  bandit  zones  significantly  in-

creases the time that agents take to complete this rescue

task,  leading  to  mission  failure.  Consequently,  entering

either  obstacle  or  bandit  zones  will  incur  specific  penal-

ties  for  the  agents  and  slow  their  speed.  The  environ-

mental  information  available  to  the  agents  includes  the

precise locations of obstacles and bandits, requiring them

to  strategically  deduce  the  optimal  path  by  considering

both the observational data and the context information

of their partners.

The reward criteria: The reward from the environ-

ment  serves  as  the  principal  metric  for  evaluating  the

ToM reasoning  and  cooperation  efficiency  of  the  agents.

To achieve a high reward, agents must collaborate effect-

ively  to  accomplish  the  task  as  quickly  as  possible,  as

longer completion time results in higher penalties. Agents

win  a  high  reward  when  both  agents  successfully  reach

the  hostage  location.  A  better  reward  performance  re-

quires  agents  to  complete  the  rescue  task  within  a  lim-

ited number of steps, demanding advanced reasoning cap-

abilities and effective collaboration.

The  ToM  reasoning  ability  of  agents  is  crucial  for

achieving the mission objective of reaching the target loc-

ation  and  rescuing  the  hostage.  Without  this  ability  to

comprehend  and  predict  their  partners,  agents  face  the

risk of becoming trapped in repetitive patterns. As depic-

ted  in Fig. 6,  if  both  agents  choose  to  remain  stationary

and wait for their partner′s move, they will receive penal-

ties at each time step. Alternatively, if the left agent con-

sistently  moves  right  while  the  right  agent  moves  left,

they will not only be reset to their starting positions but

also  receive  additional  penalties.  Therefore,  agents  need

ToM reasoning  ability  to  break  the  symmetrical  pattern

in our task.

The Reason task is complex for several reasons. First,

this  task  is  characterized  by  a  highly  sparse  reward,

presenting  a  significant  challenge  for  MARL  methods.

Second, unlike conventional search tasks where revisiting

a cell is prohibited, agents in this task can revisit all grid

cells, mirroring real-world scenarios. Finally, this task en-

vironment is partially observable and requires strong col-

laboration  among  agents,  with  unknown locations  of  ex-

plosives  and  no  communication  between  agents,  increas-

ing the task complexity.

 4.3   Environmental settings and baselines

For the scale-2 cooperative tasks, our experiment runs

for 5 000 epochs  for  QMIX.  Owing  the  fast  convergence

speed  of  COMA,  the  number  of  epochs  is  200  for  the

COMA  experiments.  To  accurately  assess  the  effective-

ness  of  our  method,  we  conduct  experiments  across  ten

different  seeds (0–9),  yielding  average  performance  and

 

Key Lock

Bandit

Hostage

Explosive

Cactus area

Rock obstacle

Agent

 
Fig. 6     Overview  of  the  example  maps  of  our  reasoning  environment (Reason).  Our  environment  consists  of  two  agents,  one
hostage, explosives, some bandits, the cactus areas, keys and locks and obstacles. The goal of agents is to reach the hostage location
and rescue the hostage from the camp of bandits. There are two different map sizes, with the larger maps having more obstacles, a
larger exploration space and greater complexity.
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γ = 0.99

variance results. We use the RMSprop optimizer in these

methods, and the learning rate is 0.000 5. The reward dis-

count factor is , and the maximum length for an

episode is 50. The maximum size of the replay buffer is 5 000.

We  employ  gradient  clipping  to  prevent  exploding  and

vanishing gradients.  All  the  experiments  were  conducted

on  an  AMD EPYC 7 742 server  with  a  single  NVIDIA-

A100 GPU that can meet our method′s computational re-

quirements.

The LRM in our ToM reasoning framework is the Co-

degen  2B-mono,  initialized  from  Codegen  2B-multi  and

specifically trained on a corpus of Python code. Codegen

2B-multi  is  derived  from  Codegen  2B-nl  and  further

trained on an extensive collection of code data from vari-

ous  programming  languages.  Codegen  2B-nl  is  randomly

initialized  and  trained  on  the  Pile,  a  vast  English  text

corpus containing 825.18 million words.

The  policy  network  in  our  LRM-MARL  framework

can  be  any  cooperative  MARL  method.  In  our  experi-

ments,  we  selected  representative  methods  from the  two

primary  categories  of  value-based  and  policy-based  ap-

proaches,  such  as  QMIX[4],  COMA[5],  QTRAN[6],  and

value-decomposition networks (VDN)[7].

 4.4   Better collaborative performance of

our framework

We  employ  the  ToM  reasoner  in  our  LRM-MARL

partner  modelling  framework  for  better  ToM  reasoning

and partner modelling in our proposed Reason tasks.  As

illustrated  in Figs. 7 and 8,  our  framework  outperforms

multiple MARL baselines in terms of convergence speed,

variance  and  average  episode  rewards,  achieving  better

cooperation  among  agents.  The  complex  map  requires

more  sophisticated  coordination  due  to  increased  ele-

ments and information, sparser rewards and an expanded

search  space. Table  1 compares  the  average  episode  re-

wards between the MARL baseline COMA and our ToM-

enhanced  COMA  in  the  complex  map.  Our  framework

achieves more robust partner modelling, better cooperat-

ive  performance,  and  faster  convergence  rates  than  the

MARL  baselines  across  different  maps,  indicating  the
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Fig. 7     Average episode reward comparison between several MARL baseline COMA (left), a policy-based method, QMIX (right), a
value-based method, and our partner modelling framework. Our proposed ToM reasoner module further improves the performance of
baseline methods, achieving faster convergence speed and smaller variances.

 

0 50 100 150 200

The number of episodes

−30

−20

−10

0

10

20

30

40

A
v
er

ag
e 

re
w

ar
d

ToM reasoner + VDN

Naive VDN

0 200 400 600 800 1 000
−20

−10

0

10

20

30

ToM reasoner + QTRAN

Naive QTRAN

A
v
er

ag
e 

re
w

ar
d

The number of episodes
 
Fig. 8     Average  episode  reward  comparison  between  several  MARL  baseline  VDN (left),  QTRAN (right),  and  our  partner
modelling framework. Our proposed ToM reasoner module further improves the performance of baseline methods, achieving faster
convergence speed and smaller variances.
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generalizability  of  our  framework in  partner  understand-

ing and modelling.

The  reasoning  capabilities  of  our  ToM  reasoner  are

crucial for the success of our proposed framework, achiev-

ing more effective partner modelling and decision-making.

By  effectively  comprehending  the  given  task,  narrowing

the search space, and achieving beneficial ToM reasoning

for  partner  belief,  our  partner  modelling  framework con-

tributes  to  an  accelerated  training  process  and  enhances

cooperative reward performance. These experimental find-

ings  highlight  the  effectiveness  of  incorporating  a  brain-

inspired  partner  modelling  framework  to  enhance  the

ToM  ability  of  traditional  MARL  agents.  These  experi-

mental results suggest that the information extractor, the

large reasoning model and the LAM module in our ToM

reasoner contribute to such robust collaboration perform-

ance and efficiency.

 4.5   Ablation study analysis

As shown in Fig. 9, we explore the effects of the LRM

size in further experiments where LRMs at varying scales

contain different numbers of neurons. Compared with the

baselines, our proposed ToM reasoners with LRMs of dif-

ferent  scales  achieve  notable  performance  enhancements

and faster convergence compared to the baselines, demon-

strating the adaptability of our framework and the effect-

iveness of our proposed ToM reasoner in simulating PFC

structures. As the scale of the LRM increases, our frame-

work  can  achieve  better  collaboration  results  and  faster

convergence.  This  result  aligns  with  existing  neuroima-

ging  research[63, 64],  which  suggests  that  the  larger  PFC

volume  and  greater  PFC  thickness  are  associated  with

stronger  capacity,  leading  to  better  executive  perform-

ance in decision-making tasks.

Many  cognitive  disorders  of  the  human  brain  stem

from a  common  factor:  the  disruption  of  neural  activity

within  the  PFC[56].  Cognitive  disruption  can  sometimes

arise from unexpected injuries,  leading to changes in the

size  of  the  PFC.  Recent  biological  research[65, 66] has  fo-

cused on how these changes affect its functions. However,

the minicolumnar basis of the PFC remains poorly under-

stood due to technological constraints, presenting an open

and  challenging  question  for  further  analysis  of  the

PFC[56]. Therefore, simulating the PFC may facilitate the

development of new hypotheses and contribute to a more

comprehensive understanding of neuroscience. Our previ-

ous analysis indicates that our ToM reasoner is biologic-

ally plausible and exhibits multiscale similarities with the

PFC  in  the  biological  decision-making  structure.  There-

fore,  further  computational  experiments  may  provide

computational insights into the study of the PFC at both

the functional and structural scales.

In our further ablation analysis, we conduct extensive

experiments  to  validate  the  effectiveness  of  the  LAM

module  in  our  proposed  ToM  reasoner,  as  illustrated  in

Fig. 10.  Our  ablation  study  demonstrates  that  the  LAM

module  effectively  maps  and  transforms  from  the  LRM

semantic space to the MARL state-action space, facilitat-

ing  efficient  collaboration  among  agents  and  enhancing

cooperative performance.

 5   Discussions

Although our LRM-MARL framework achieves better

partner modelling and cooperation performance, there are

still  limitations in various aspects.  To simulate the PFC

for robust and adaptive partner modelling, we developed

a  ToM  reasoner  within  the  LRM-MARL  framework.

However, since the LRM in our ToM reasoner is a purely

 

Table 1    The average episode reward results in a more
challenging map between the cooperative MARL baseline

COMA and our partner modelling framework.

Methods Average reward Variance

Naive COMA 26.86 ±2.75

+ ToM reasoner 32.86 ±0.93
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Fig. 9     Ablation  results  of  different  LRM scales  for  our  ToM  reasoner  on  COMA (left) and  QMIX (right):  Larger  scales  yield
better  performance  and  faster  convergence. (Colored  figures  are  available  in  the  online  version  at
https://link.springer.com/journal/11633)
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text-based LRM, it lacks the ability to process multimod-

al  information.  Therefore,  our  framework  requires  the

design of  critical  environmental  features  and prompt en-

gineering  in  more  complex  environments  to  create  more

practical knowledge templates.

While our ToM reasoner demonstrates improved reas-

oning  ability,  it  is  challenging  to  adapt  quickly  to  the

variability  of  human  behavior  in  complex  environments.

The incorporation of  diverse  trajectory data,  such as  di-

verse human trajectory data, into the LRM training pro-

cess, could mitigate this limitation and improve its adapt-

ability.  Therefore,  constructing  a  partner  modelling

framework with multimodal capabilities and faster adapt-

ation to changing partner behaviors is a promising direc-

tion for future research.

 6   Conclusions

Inspired  by  the  biological  decision-making  structure

and  the  reasoning  process  in  the  PFC,  we  have  de-

veloped  an  LRM-improved  MARL  framework.  This

framework  aims  for  robust  and  adaptive  partner  model-

ling  with  ToM  reasoning  capabilities  in  cooperative

MARL.  We  incorporate  our  proposed  framework  into

various competitive MARL methods, achieving better re-

ward  scores  and  sample  efficiency.  Further  experimental

analyses reveal the adaptivity, robustness and generaliza-

tion  of  our  proposed  framework,  indicating  its  potential

applicability to more complex tasks. We also discuss the

limitations  of  our  LRM-MARL  framework  and  propose

possible solutions as future research directions.
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