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Abstract: The cooperative multi-agent reinforcement learning (MARL) field has experienced remarkable progress. However, these
advanced methods still face substantial challenges in real-world applications. A significant direction for improving cooperative
MARL techniques and addressing existing challenges is robust and adaptive partner modelling. Reasoning about the beliefs of part-
ners, such as their intentions and behaviors, is crucial for partner modelling, which is known as the theory of mind (ToM) in cognit-
ive science. In animals, biological ToM reasoning in the prefrontal cortex (PFC) plays an important role in complex environment
survival before decision-making. However, the biological PFC is too complex to be directly incorporated into conventional artificial
neural networks (ANNSs) in either functional or structural manners. Large reasoning language models (LRMs) have recently demon-
strated significant human-like reasoning abilities and impressive performance. Therefore, we propose an improved LRM framework
to simulate the PFC for robust and adaptive partner modelling. Despite the excellent performance of LRMs in various fields, their
ToM reasoning capabilities remain limited in complex MARL scenarios. Therefore, we further propose a ToM reasoner to enhance
the ToM reasoning abilities of LRMs. Our framework exhibits robustness and adaptability across various LRM sizes, improving the
ToM reasoning ability of agents and facilitating more effective partner modelling, thereby achieving higher performance scores in co-
operative benchmarks.
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1 Introduction partner modelling before decision-making, potentially

hindering their practical applications in terms of perform-

Cooperative ~ multi-agent  reinforcement learning ance and scalability. Therefore, establishing robust and

(MARL) has attracted considerable attention because of
its potential to coordinate multiple agents to achieve
common goals in complex environments[}-3l. However, co-
operative MARL scenarios face various challenges, such
as nonstationary and credit assignment challenges, requir-
ing agents to break symmetry and cooperate efficiently.
Several MARL approaches47 have been developed to ad-
dress these challenges. However, these methods overlook
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adaptive partner modelling for the MARL algorithm to
accurately predict and estimate the behaviors and inten-
tions of other agents is crucial for efficient cooperation.
Modelling partners in cooperative MARL tasks is a
special case of opponent modelling(811, a crucial research
direction in multi-agent systems for solving the non-sta-
tionarity challenge. Traditional opponent modelling meth-
ods include strategy reconstruction, type reasoning, inten-
tion recognition, recursive reasoning and other methodslsl.
However, these approaches have drawbacks, including ad-
aptation gaps, complex feature engineering and insuffi-
cient state-space representation capabilities. Researchers
have attempted to address these critical challenges
through explicit partner modelling. Some methods con-
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struct additional behavior models to simulate partner
agents involving analyzing opponents’ context informa-
tion, such as historical trajectories, to characterize their
behaviors and predict their actions[!2 13. Although expli-
cit partner modelling methods can model partners from
some perspectives, they often suffer from limited partner
reasoning, interpretability and a lack of interaction cap-
abilities.

Large language models (LLMs), such as GPT-4 and
GPT-01l14, have recently shown expert-level abilities
across various areas, profoundly influencing people's
lives(!5-18], This development has spurred interest in
leveraging LLLMs' advanced reasoning capabilities to drive
innovation and accelerate progress in various fields,
from code generationl!% 201 to human-like autonomous
agents(21-24, Recent studies have demonstrated that integ-
rating code datasets and chain-of-thought (CoT) prompt-
ing significantly enhances the reasoning capabilities of
LLMsl25 26], LLMs with strong reasoning capabilities can
be denoted as large reasoning language models (LRMs).
In this work, we utilize an LRM to construct a robust
and adaptive partner modelling framework, enhancing the
partner reasoning ability and interpretability of MARL
methods.

The biological social decision-making model is one of
the most critical theories in neuroscience, as it explains
why humans can achieve efficient social cooperation. This
model comprises two key components: intuitive decision-
making driven by reinforcement learning and reasoning
decision-making based on belief-based learning, which in-
volves anticipating the intentions and actions of others27
28], Humans integrate values from intuitive decision-mak-
ing (e.g., goals) and beliefs from social reasoning (e.g., in-
tentions of others) to achieve efficient social decision-mak-
ing. Research indicates that belief-based learning is
primarily associated with the prefrontal cortex (PFC) re-
gion[?] making it crucial to construct a model that simu-
lates the belief-based learning mechanism in the PFC for
human-like partner reasoning.

The PFC plays a critical role in belief-based learning
by performing mental reasoning, also known as theory of
mind (ToM). Therefore, we develop a ToM reasoning
module to simulate the PFC for partner modelling.
ToM[B0-33] is a crucial psychological concept that emphas-
izes people's ability to understand and reason about the
goals, intentions and mental states of others. The incor-
poration of ToM into partner modelling in the cooperat-
ive MARL is a promising research direction that will fa-
cilitate efficient collaboration. Recent computational
models of ToM have facilitated value alignment between
humans and agentsi34 and fostered efficient communica-
tion among multiple agents/33.

Inspired by the biological social decision-making mod-
el, we propose a biologically plausible LRM-improved
MARL (LRM-MARL) framework to further enhance ad-
aptive partner modelling and efficient cooperation. In our
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framework, we propose a ToM reasoning module to im-
prove the mental reasoning capabilities of the LRM for
cooperative MARL tasks. To validate the ToM ability of
our framework, we have conducted diverse experiments
on the basis of our previous workB6. The experimental
results demonstrate the effectiveness of our framework in
mental reasoning and partner modelling, which signific-
antly enhances competitive MARL methods. Our contri-
butions can be summarized as follows:

1) Inspired by the biological social decision-making
model, we design a partner modelling LRM-MARL frame-
work. Our framework incorporates a ToM reasoner mod-
ule as the belief learning component for better ToM reas-
oning ability, which comprises an information extractor,
our LRM, and the LRM augmenting module (LAM).

2) Among a large number of recently developed
LRMs, we select CodeGen in our ToM reasoning module
to simulate the PFC. To validate the biological plausibil-
ity of our ToM reasoning module as the PFC, we con-
duct analyses from structural and functional perspectives
and construct diverse experiments for further verification.

3) The experimental results demonstrate that our pro-
posed partner modelling framework exhibits superior reas-
oning capabilities and cooperative performance across
various maps, indicating that our framework can success-
fully explain the beliefs of partners and improve collabor-
ation efficiency in MARL cooperative tasks.

2 Related works

2.1 Cooperative reinforce-

ment learning

multi-agent

Significant breakthroughs have been recently made in
cooperative MARL, facilitated by the development of
many advanced networks and MARL techniquesl4 5 7.
These methods are commonly categorized into two cat-
egories: value-based methods and policy-based methods.
Independent Q-learning (IQL)B7 extends the deep Q-net-
work (DQN) paradigm to cooperative MARL, which in-
volves the interaction between two learning agents. Q-
value mixing (QMIX)4, a value-based approach, integ-
rates the centralized training decentralized execution
framework and a mixing network to estimate joint action
values as a monotonic combination of individual agent
values. The actor-critic method counterfactual multi-
agent policy gradient (COMA)P! approaches the credit as-
signment challenge by leveraging counterfactual baselines.
Qtranlf attempts to enhance QMIX by alleviating cer-
tain structural constraints. However, these methods over-
look the construction of ToM models for other agents,
which are crucial for inferring their intentions and pre-
dicting their subsequent actions.

2.2 Partner modelling

Understanding and predicting the actions and inten-
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tions of partner agents is crucial for achieving efficient co-
operation in multi-agent scenarios. Some existing re-
search on partner modelling focuses on characterizing the
styles and strategies of partners and predicting their ac-
tions in MARL scenarios. Recent work® utilizes the max-
imum entropy method for partner modelling. He et al.[!0]
construct an additional partner modelling module to es-
timate the qg-tables of partner agents. Wen et al.[ll]
propose a partner modelling method through multi-step
recursive reasoning. Inspired by cognitive science, Li
et al.l2l predict partner styles by constructing a ToM
module, achieving efficient cooperation with unseen part-
ners in the cooperative overcooked environment. Wu
et al.B8] focus on implicit modelling in interactions with
various opponents or partners. Nonetheless, in contrast to
the ToM cognitive process in humans, which incorpor-
ates substantial common-sense world knowledge and task-
specific prior knowledge, these partner modelling mod-
ules do not consider such knowledge, limiting their effect-
iveness and interpretability.

2.3 Large reasoning language model

The exponential growth of LRMsl'4 17 has profoundly
impacted various industries to address challenging
tasks[!5: 16, 18, 21, 22]  Some LRMs demonstrate exceptional
reasoning skills in understanding intricate linguistic struc-
tures and making accurate decisions[?% 26l, These reason-
ing abilities of LRMs can be elicited through the CoT
prompting equipment26: 39 and the extensive code cor-
pora, which guide the model in thinking step by
stepll% 40, While existing LRMs demonstrate exceptional
overall abilities, they still lack sufficient ToM reasoning
capabilities for efficient collaborationl*!l, requiring the in-
tegration of various cognitive skills. Our research aims to
design a framework to enhance the ToM reasoning capab-
ilities of existing LRMs for partner modelling in multi-
agent tasks, achieving efficient cooperation among agents.

2.4 Theory of mind in MARL

ToMLB0: 42, 43] js a crucial cognitive ability that allows
individuals to perceive, comprehend and attribute unob-
servable mental states of others, such as thoughts, de-
sires and emotionsB133, 43, The ToM ability facilitates so-
cial interactions, communication, empathy, self-aware-
ness and moral reasoning, fostering human accomplish-
ments. Therefore, researchers have endeavoured to equip
AT agents with ToM capabilities to address critical chal-
lenges in MARL, such as low sample efficiency and poor
generalizability[34 35 44 45], The ToM module predicts the
values and intents of human users based on their instruc-
tions and feedback for effective bidirectional human-ro-
bot communications®4. Wang et al.35] utilize the ToM
module to anticipate the priority of communication
between agents, achieving more efficient agent communic-

ation and cooperation. By leveraging the historical tra-
jectory data of other agents, agents with ToM capabilit-
ies can forecast their subsequent trajectories!44. Some re-
searchers constructed mental models for the human-ro-
bot teamingl43l. In contrast to previous works, our work
focuses primarily on the reasoning aspect of ToM.
Through our ToM reasoning module, agents can reason
and infer the intentions, goals and actions of other
agents, thereby facilitating efficient collaboration.

3 Methodology

3.1 Problem definition

In cooperative multi-agent problems, a 2-player
Markov decision process can be defined as a tuple
(0,A,P,R,M,Q,v,p"), where O represents the obser-
vation space and A represents the action space shared by
both the ego and partner agents. The joint action for the
ego and partner agents can be denoted by a = (a',a?),
whereas the joint observation can be represented as
o = (0%,0%) consisting of the ego and partner observa-
tions. P defines the environment transition probability
function P : O x A — O. In our experiment, the ego and
partner agents share the same structure and reward func-
tion. The reward function R : O x A — R is the same for
all the agents.

The ToM reasoner model M can reason for the part-
ner agent on the basis of the historical context informa-
tion of the partner agent and observation information at
the current time step ¢t. Q denotes the partner reasoning
space and v € [0,1) is the discount factor used for future
rewards. At time step t, the ego agent perceives environ-
mental observation o € @ and obtains the ToM partner
reasoning q; € Q from the ToM reasoner M, taking
action af € A drawn from the ego policy p':Ox
A —[0,1], denoted as a; =p' (- |of,q;). The partner
policy can be denoted as a? = p? ( | o7, qf) The ego and
partner agents transit to the next state o:;y1 with prob-
ability P (o441 | 0s,a¢), receiving a numerical reward
ri+1 from the environment. Agents aim to maximize the
cumulative discounted return Zt ’YtT(Ot,at) via efficient

collaboration. The detailed model structure is presented
in Section 3.3.

3.2 Biological decision-making structure

The social decision-making model in neuroscience sug-
gests that human decision-making predominantly relies
on two mechanisms: intuitive decision-making, which is
based on reinforcement learning through trial and error,
and ToM reasoning decision-making, which is based on
belief learning and involves predicting and anticipating
the actions of others[2”. 28, 46-48]  To refine these two mech-
anisms, we summarized a biological decision-making
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structure in the brain based on analysis from relevant in-
terdisciplinary papersi4952, as depicted in Fig.1l. The
structure comprises two distinct pathwaysl46-48]: an intuit-
ive decision-making pathway and a ToM reasoning path-
way. The intuitive pathway forms a fast decision-making
system, including the sensory region and basal ganglia
(BG). The ToM reasoning pathway, which forms the slow
decision-making system, involves cooperation among mul-
tiple brain areas, including the sensory region, BG, medi-
al prefrontal cortex (mPFC) and dorsolateral prefrontal
cortex (dIPFC)M49, 501,

The sensory region in the brain plays a critical role in
processing environmental observations and extracting
crucial features, which is fundamental for ToM reasoning
and decision-making. This region processes environment-
al observations and transmits essential encoded informa-
tion to the PFC, an important area in cognitive control,
with the ability to orchestrate thought and action accord-
ing to the goalsP2. The mPFC area in the PFC is crucial
for interpreting environmental cues and constructing the
reasoning representations of othersl®l 52, The mPFC then
translates this sensory input into ToM reasoning, which is
conveyed to the dIPFC. The dIPFC refines this input and
plays a supramodal role in various executive functions,
including attention selection, working memory, intricate
partner reasoning and belief-making. It can adapt to en-
vironmental changes, collaborating with other regions to
increase decision-making efficiency(53l. Therefore, the dIP-
FC maintains strong connections with the mPFC and the
BG, which is crucial for modulating mental representa-
tion and generating partner state-action reasoning for de-
cision-making processesiy. Finally, partner reasoning
reaches the BG, which comprises some subcortical nuclei

essential for regulating motor and cognitive functions, in-
These

cluding attention and decision-makingl49 50, 55,
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brain regions dynamically interact within human cogni-
tion to manage input information, facilitate ToM reason-
ing and make decisions.

3.3 LRM-improved MARL framework

Inspired by the biological decision-making structure
depicted in Fig.1, we have developed our LRM-MARL
framework to enhance ToM reasoning and facilitate effi-
cient collaboration on the basis of our previous work[6l,
As illustrated in Fig.2, our proposed framework com-
prises two core modules: An MARL module for decision-
making, which mirrors the intuitive decision-making
pathway in the biological decision-making structure, and
a partner modelling ToM reasoning module (ToM reason-
er) based on the LRM for belief learning, which simu-
lates the ToM reasoning pathway. This framework aims
to enhance the ToM ability of agents in the decision-mak-
ing process by combining the strengths of intuitive de-
cision-making and ToM reasoning.

As shown in Fig.2, our framework utilizes the obser-
vation encoder to preprocess and gather information from
environmental observations oi to generate the environ-
ment embedding ei. The observation of of agents com-
prises the information of each grid node within the vis-
ible range of agents, including the positions of agents, as
well as observable features such as keys, locks and di-
verse terrains. As shown in (1), we have developed the
ToM reasoner as a partner modelling module, with envir-
onment embedding e! as its input. The MARL compon-
ent in our framework can employ various MARL meth-
ods, including both value-based and policy-based ap-
proaches, such as QMIX and COMA. As shown in (2),
the partner modelling in our ToM reasoner component in-
cludes three stages: extracting information, ToM reason-
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Fig. 1

The biological decision-making structure, including an intuitive decision-making pathway (

) and a ToM reasoning

pathway (purple). The green and red pathways represent the interaction process between the human and the environment, and the
environmental reward feedback, respectively. (Colored figure is available in the online version at https://link.springer.com/

journal/11633)
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Fig. 2 Our proposed LRM-MARL framework is inspired by the biological decision-making structure, comprising an intuitive
decision-making pathway based on the MARL module and a ToM reasoner for partner belief learning. The ToM reasoner for partner
modelling consists of three stages: extracting information, rethinking results and ToM reasoning, and partner reasoning. These
stages are completed through an information extractor module, the LRM model and the LRM augmenting module.

ing and partner reasoning in the cooperative MARL scen-
arios. It comprises an information extractor, the LRM,
and an LRM augmenting module (LAM).

In our ToM reasoning module, the first stage involves
information extraction by an information extractor, which
is composed of three parts. First, a template-based com-
ment generation function serves as the knowledge select-
or, utilizing the partner context c; ¢ and environment em-
bedding e! to generate the knowledge template format-
ted as code comments as output. The second part of the
information extractor uses a code LLM to generate code
reasoning, enhancing the ToM reasoning capabilities of
our framework. In the third part, we integrate these
knowledge templates with the code-form reasoning and
the latest ToM reasoning from the memory to construct a
structured prompt p: in the prompt generator. As shown
in Fig.3, our knowledge template includes the environ-
mental descriptions and the rules of our cooperative task.

Observation encoding : e = Embed(o})
Partner modelling : qi = ToMpem,m(ei7 c;_il, li_l)

Action selection : al = pi(oi, qZ) (1)

Our proposed ToM reasoner component in our frame-
work uses LRM to understand the last action of the part-
ner and achieve ToM reasoning for the beliefs of the part-
ner in the second stage, which is crucial for improving the
ToM reasoning ability and partner modelling of agents
and achieving more efficient cooperation. The LRM takes
pt as input and generates the comprehensive ToM reas-
oning representation l{, an embedding vector incorporat-

ing partner reasoning. By using this LRM, we can gener-
ate an interpretable textual output for the partner and

environment.

Extracting information : p} = fuprc(er, ¢;1, li—1)
ToM reasoning : I} = fprc (pi)

Partner reasoning : ¢ = faprc (li7 c?jl). (2)

To bridge the gap between the semantic space of
LRM and the state-action space in MARL, we introduce
an additional LAM module in the third stage. The LAM
module contains two pathways, mapping the ToM repres-
entation I! to the partner state and action space, respect-
ively. Input of the LAM includes I} and the partner con-
text ¢, * from memory, and the output is the partner
reasoning representation qi. We concatenate ¢i with the
environmental observation o! as input to the MARL
methods for the decision-making process.

3.4 Biologically plausible ToM reasoner

Existing research underscores the pivotal role of code
in enhancing the reasoning abilities of LRMs[26; 39, There-
fore, we choose Codegen, a code corpus-based language
model?, to simulate the mPFC in our proposed partner
modelling ToM reasoner module. Codegen represents a
significant advancement in program synthesis LLMs[20],
which is trained on both natural language and program-
ming language data, and open-sourcing the training lib-
rary JAXFORMER. Our partner modelling ToM reason-
er module employs a transformer-based architecture to

@ Springer
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Prompt

# Assuming you are a helpful AI assistant with theory of mind ability. Your advanced capabilities enable you to process and
understand the cooperative task rules, environmental state, partner context information, and other relevant information for
achieving ToM reasoning and partner modeling about your partner. Now you can assist the policy of ego agent for making

the optimal action.

# <$environment_introduction$>:

# Environment information: There are an ego agent, a partner agent, keys, locks, bandits, an explosive, and a hostage goal
in our cooperative task. Terrain variations comprise standard areas, rock obstacles, and cactus areas. Each agent can select
from five actions: up, down, left, right, stay, denoted by the numerical values 0—4, respectively: 0-down, 1-up, 2-left, 3-right,
4-stay.

# Environment rule: The primary objective of agents is to: reach the hostage location and liberate the hostage in the camp
of bandit criminals. Now this is a big version with a 5x5 grid layout. The ego agent and partner agent do not know the
location of the explosive, and reaching it simultaneously is unfeasible. Different terrains have different speeds. The faster the

ego agent and partner agent reach the target point simultaneously, the higher the reward will be.

# <$current_observation$>:

# Initialize a zero matrix for the bandit camp, denoted as 5x5 grids g
# The grid cell with the hostage in the matrix will be assigned a value of 1 and the hostage location is in the position [4,2].
The ego agent grid cell in the matrix will be assigned a value of 2, and the partner agent grid cell in the matrix will be

assigned a value of 3.
g = np.zeros((5, 5)), g4, 2] = 1

Fig. 3 A prompt example, which is a textual description of the environment generated by the prompt extractor at stage one. The
prompt generator combines the knowledge template with the code reasoning as the output of the prompt extractor. The highlighted
part represents the code reasoning from the code LLM, whereas the other part represents the knowledge template of the knowledge

selector.

achieve high-quality understanding and reasoning from
natural language prompts.

In Section 4, we demonstrate the biological plausibil-
ity of the ToM reasoner to simulate PFC reasoning by
analyzing the multiscale similarity between the PFC and
our ToM reasoner. We first validate the similarity from
both structural and functional perspectives, followed by
multiscale experiments for further validation.

From a structural standpoint, the PFC comprises in-
terlaminar mini-columns®0, a configuration correspond-
ing to the multi-layered structure inherent to the trans-
former architecture within the ToM reasoner. Similarly,
recent research37l has proposed that PFC regions can
make probabilistic inferences about the reliability of the
current behavioral strategy and several alternative
strategies, thus deciding whether to exploit the existing
strategy or explore new strategies. Furthermore, it has
been shown[>8l that the PFC is vital for verbal analogical
reasoning, and other researchSl has highlighted its role in
the executive control of task-related target selection and
decision-making during a visuomotor delayed match to
sample (DMS) task. Therefore, the PFC is crucial for so-
cial reasoning and decision-making, a function similar to
the robust ToM and reasoning capabilities exhibited by
our proposed ToM reasoner.

Our comprehensive analysis demonstrates the
multiscale similarity and striking equivalence between the
PFC and the ToM reasoner, indicating that the biologic-
ally plausible ToM reasoner can serve as a PFC in facilit-
ating human-like cooperation and decision-making among
agents. Furthermore, the multiscale similarities between
the transformer structure in the ToM reasoner and inter-
laminar mini-columns in the PFC suggest that the com-

@ Springer

putational experiments of our framework provide in-
sights into human cognitive processes. In Section 4, we
will further validate the biological plausibility through
two experimental scales: cognitive tests and cooperative
MARL tasks. In the scale-1 experiment, we construct cog-
nitive tests, including logical and ToM reasoning tests, to
evaluate the reasoning ability of our proposed ToM
reasoner. In the scale-2 experiment, we introduce a new
collaborative MARL environment, Reason, to verify our
framework for partner modelling and efficient collabora-
tion.

4 Experiments

4.1 Cognitive test of ToM reasoner

In Section 4, we designed multiscale experiments to
evaluate our proposed partner modelling framework. In
the scale-1 experiment, we construct cognitive tests com-
prising logical and ToM reasoning questions to evaluate
the reasoning ability of our ToM reasoner. In the scale-2
experiment, we introduce a new collaborative MARL en-
vironment called Reason to verify our framework for
partner modelling and efficient collaboration.

As shown in Figs.4 and 5, we have developed a cog-
nitive test for our scale-1 experiment to verify the
multiscale similarity between the PFC and our ToM
reasoner from the perspectives of both logical and ToM
reasoning on the basis of relevant datasets from previous
work[®]. The logical reasoning part spans different diffi-
culty levels and contains intelligence test questions re-
lated to mathematical reasoning and pattern recognition.



X. Li et al. / Theory of Mind Inspired Large Reasoning Language Model Improved Multi-agent Reinforcement - 7

# Sadie likes it when her dog stays in the house while she is away.

# Thus, she locks her dog in the house before going on a trip. When Sadie is gone, her dad comes home.
# Dad does not like it when the dog is locked in the house, so he takes it outside and locks it in the garage instead.

# Sadie thinks that the dog is in the _ :
# Sadie thinks that the dog is in the house.

# The dog is in the __ :
# The dog is in the garage when dad comes back.

# On the table, there is a bottle. It is full of soda; there is no juice in it.

# But the label on this bottle says “juice” and not “soda”.

# Alice enters the room and notices the bottle. She has never seen it before. She reads the label.

# She believes that the bottle is full of __ :
# She believes that the bottle is full of juice.

# She calls her friend to tell them that she has just found a bottle full of __ :
# She calls her friend to tell them that she has just found a bottle full of juice.

Fig. 4  Examples of the false belief tests: the false location test and the false content test. Each false belief test in our ToM
reasoning tests comprises two questions from distinct viewpoints, necessitating accurate responses to all the questions for successful
completion. In these examples, the highlighted portions in green and red denote the questions and responses generated by our ToM

reasoner, indicating its ToM reasoning ability.

https://link.springer.com/journal/11633)

# There are three variables a, b and ¢
#a>band b>c
What is the relationship between a and ¢?

(Colored

figures are available in the online version at

# There are some grid, the grid 1 has 1 apple, and the grid 2
has 2 apples, what about the grid 3?

Fig. 5 Examples of logic reasoning tests in our cognitive tests. The highlightediseécetion represents the output of the ToM
reasoner, whereas the white section represents the question for the ToM reasoner.

The ToM reasoning part in our cognitive tests includes
several standard cognitive tests, such as false belief
tasks(5% 601 which verify the ToM ability of ToM reason-
ing to understand other agents.

The false belief test, also known as the Sally-Anne
testl61]) is a commonly used standard tool in cognitive sci-
ence for examining the development of children’'s ToM
through their prediction of other people’s beliefs. In this
test, the researcher presents two dolls to the children,
Sally (beside a basket) and Anne (beside a box). Sally put
a small ball into the basket, covered it with a cloth, and
then Sally left. After Sally left, Anne took the ball out of
the basket and put it in the box beside her. After a while
Sally came back. At this time, the researcher asked the
children, “where will Sally go to find the ball?” This task
tests the children'’s ability in belief reasoning. In cognit-
ive science, belief reasoning is a crucial component of
ToM reasoning ability, which is the core ability for part-
ner modelling. Therefore, we can verify the ToM ability
of our ToM reasoner via the false belief test.

The ToM reasoner in our proposed partner modelling
framework completes our cognitive tests, which demon-
strate logical reasoning and strong ToM ability. Some re-
searchl®? in the field of cognitive science has indicated
that a close link between the mPFC and the dIPFC with
the false belief test. Researcher(62] has led to an fMRI ex-
periment to verify and explore this relationship, indicat-
ing the important role of the PFC in stimulus-independ-
ent mental processes during false belief reasoning, facilit-
ating the shift in attention between stimulus-oriented and

stimulus-independent mental processes. Therefore, our ex-
perimental results further validate the multiscale similar-
ity between the ToM reasoner and the PFC. In the scale-
2 experiment, we apply our proposed partner modelling
framework to cooperative MARL tasks, simulating the
PFC in the biological decision-making structure to en-
hance the ToM reasoning abilities of agents.

4.2 Reason environment

As illustrated in Fig.6, we present our cooperative en-
vironment in the scale-2 experiment, Reason, comprising
rock obstacles, a target hostage location, some bandits,
an explosive zone and two agents. In the Reason environ-
ment, the agents need to reason and collaboratively com-
plete a series of subtasks to rescue the hostage from the
bandits as quickly as possible. Their tasks involve navig-
ating through an explosive zone, avoiding bandits and
dangerous obstacles, and collecting keys to unlock to res-
cue the hostage. The action space for the two agents in-
cludes five distinct actions: moving upwards, downwards,
leftwards, rightwards, and remaining stationary. The en-
vironmental observation comprises all observable grids,
with each grid represented by a high-dimensional embed-
ding vector.

To evaluate the adaptability of our partner modelling
LRM-MARL framework across various scenarios, we have
constructed various maps with different settings, repres-
enting distinct complexity levels. Within the expansive
large-scale map of our environment, we incorporate
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Fig. 6 Overview of the example maps of our reasoning environment (Reason). Our environment consists of two agents, one

hostage, explosives, some bandits, the cactus areas, keys and locks and obstacles. The goal of agents is to reach the hostage location
and rescue the hostage from the camp of bandits. There are two different map sizes, with the larger maps having more obstacles, a

larger exploration space and greater complexity.

broader spatial dimensions, increased obstacle and ban-
dit density, and more terrain types to evaluate our pro-
posed framework’s reasoning capabilities comprehensively.

The explosive zone: To prevent the agents from
rescuing hostages, the bandits place weight-sensitive ex-
plosives at undisclosed locations unknown to the agents.
The explosives are triggered when two agents simultan-
eously arrive at the explosive’s location. As the observa-
tional data of agents do not include specific details about
the explosives, such as their exact positions, they must
explore and collaborate effectively to navigate through
these explosive zones. If the explosives are triggered,
agents will return to their starting positions and penalize
them. Therefore, strong collaboration is essential for the
agents to reach the hostage location successfully.

The obstacles and the bandit zones: In this task,
agents are prohibited from entering areas with rock
obstacles. Entering the bandit zones significantly in-
creases the time that agents take to complete this rescue
task, leading to mission failure. Consequently, entering
either obstacle or bandit zones will incur specific penal-
ties for the agents and slow their speed. The environ-
mental information available to the agents includes the
precise locations of obstacles and bandits, requiring them
to strategically deduce the optimal path by considering
both the observational data and the context information
of their partners.

The reward criteria: The reward from the environ-
ment serves as the principal metric for evaluating the
ToM reasoning and cooperation efficiency of the agents.
To achieve a high reward, agents must collaborate effect-
ively to accomplish the task as quickly as possible, as
longer completion time results in higher penalties. Agents
win a high reward when both agents successfully reach
the hostage location. A better reward performance re-
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quires agents to complete the rescue task within a lim-
ited number of steps, demanding advanced reasoning cap-
abilities and effective collaboration.

The ToM reasoning ability of agents is crucial for
achieving the mission objective of reaching the target loc-
ation and rescuing the hostage. Without this ability to
comprehend and predict their partners, agents face the
risk of becoming trapped in repetitive patterns. As depic-
ted in Fig.6, if both agents choose to remain stationary
and wait for their partner's move, they will receive penal-
ties at each time step. Alternatively, if the left agent con-
sistently moves right while the right agent moves left,
they will not only be reset to their starting positions but
also receive additional penalties. Therefore, agents need
ToM reasoning ability to break the symmetrical pattern
in our task.

The Reason task is complex for several reasons. First,
this task is characterized by a highly sparse reward,
presenting a significant challenge for MARL methods.
Second, unlike conventional search tasks where revisiting
a cell is prohibited, agents in this task can revisit all grid
cells, mirroring real-world scenarios. Finally, this task en-
vironment is partially observable and requires strong col-
laboration among agents, with unknown locations of ex-
plosives and no communication between agents, increas-
ing the task complexity.

4.3 Environmental settings and baselines

For the scale-2 cooperative tasks, our experiment runs
for 5000 epochs for QMIX. Owing the fast convergence
speed of COMA, the number of epochs is 200 for the
COMA experiments. To accurately assess the effective-
ness of our method, we conduct experiments across ten
different seeds (0-9), yielding average performance and
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variance results. We use the RMSprop optimizer in these
methods, and the learning rate is 0.000 5. The reward dis-
count factor is v = 0.99, and the maximum length for an
episode is 50. The maximum size of the replay buffer is 5 000.
We employ gradient clipping to prevent exploding and
vanishing gradients. All the experiments were conducted
on an AMD EPYC 7742 server with a single NVIDIA-
A100 GPU that can meet our method’s computational re-
quirements.

The LRM in our ToM reasoning framework is the Co-
degen 2B-mono, initialized from Codegen 2B-multi and
specifically trained on a corpus of Python code. Codegen
2B-multi is derived from Codegen 2B-nl and further
trained on an extensive collection of code data from vari-
ous programming languages. Codegen 2B-nl is randomly
initialized and trained on the Pile, a vast English text
corpus containing 825.18 million words.

The policy network in our LRM-MARL framework
can be any cooperative MARL method. In our experi-
ments, we selected representative methods from the two

primary categories of value-based and policy-based ap-
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Fig. 7

Average reward

proaches, such as QMIXH4, COMADB], QTRANI and
value-decomposition networks (VDN)[L.

4.4 Better collaborative performance of
our framework

We employ the ToM reasoner in our LRM-MARL
partner modelling framework for better ToM reasoning
and partner modelling in our proposed Reason tasks. As
illustrated in Figs.7 and 8, our framework outperforms
multiple MARL baselines in terms of convergence speed,
variance and average episode rewards, achieving better
cooperation among agents. The complex map requires
more sophisticated coordination due to increased -ele-
ments and information, sparser rewards and an expanded
search space. Table 1 compares the average episode re-
wards between the MARL baseline COMA and our ToM-
enhanced COMA in the complex map. Our framework
achieves more robust partner modelling, better cooperat-
ive performance, and faster convergence rates than the
MARL baselines across different maps, indicating the
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Average episode reward comparison between several MARL baseline COMA (left), a policy-based method, QMIX (right), a

value-based method, and our partner modelling framework. Our proposed ToM reasoner module further improves the performance of
baseline methods, achieving faster convergence speed and smaller variances.
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Average episode reward comparison between several MARL baseline VDN (left), QTRAN (right), and our partner

modelling framework. Our proposed ToM reasoner module further improves the performance of baseline methods, achieving faster

convergence speed and smaller variances.
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Table 1 The average episode reward results in a more
challenging map between the cooperative MARL baseline
COMA and our partner modelling framework.

Methods Average reward Variance
Naive COMA 26.86 +2.75
+ ToM reasoner 32.86 +0.93

generalizability of our framework in partner understand-
ing and modelling.

The reasoning capabilities of our ToM reasoner are
crucial for the success of our proposed framework, achiev-
ing more effective partner modelling and decision-making.
By effectively comprehending the given task, narrowing
the search space, and achieving beneficial ToM reasoning
for partner belief, our partner modelling framework con-
tributes to an accelerated training process and enhances
cooperative reward performance. These experimental find-
ings highlight the effectiveness of incorporating a brain-
inspired partner modelling framework to enhance the
ToM ability of traditional MARL agents. These experi-
mental results suggest that the information extractor, the
large reasoning model and the LAM module in our ToM
reasoner contribute to such robust collaboration perform-
ance and efficiency.

4.5 Ablation study analysis

As shown in Fig.9, we explore the effects of the LRM
size in further experiments where LRMs at varying scales
contain different numbers of neurons. Compared with the
baselines, our proposed ToM reasoners with LRMs of dif-
ferent scales achieve notable performance enhancements
and faster convergence compared to the baselines, demon-
strating the adaptability of our framework and the effect-
iveness of our proposed ToM reasoner in simulating PFC
structures. As the scale of the LRM increases, our frame-
work can achieve better collaboration results and faster
convergence. This result aligns with existing neuroima-
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Fig. 9
better  performance and  faster
https://link.springer.com/journal/11633)

convergence.
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ging researchl63; 64 which suggests that the larger PFC
volume and greater PFC thickness are associated with
stronger capacity, leading to better executive perform-
ance in decision-making tasks.

Many cognitive disorders of the human brain stem
from a common factor: the disruption of neural activity
within the PFCPSl. Cognitive disruption can sometimes
arise from unexpected injuries, leading to changes in the
size of the PFC. Recent biological researchl6 661 has fo-
cused on how these changes affect its functions. However,
the minicolumnar basis of the PFC remains poorly under-
stood due to technological constraints, presenting an open
and challenging question for further analysis of the
PFCPSl. Therefore, simulating the PFC may facilitate the
development of new hypotheses and contribute to a more
comprehensive understanding of neuroscience. Our previ-
ous analysis indicates that our ToM reasoner is biologic-
ally plausible and exhibits multiscale similarities with the
PFC in the biological decision-making structure. There-
fore, further computational experiments may provide
computational insights into the study of the PFC at both
the functional and structural scales.

In our further ablation analysis, we conduct extensive
experiments to validate the effectiveness of the LAM
module in our proposed ToM reasoner, as illustrated in
Fig.10. Our ablation study demonstrates that the LAM
module effectively maps and transforms from the LRM
semantic space to the MARL state-action space, facilitat-
ing efficient collaboration among agents and enhancing
cooperative performance.

5 Discussions

Although our LRM-MARL framework achieves better
partner modelling and cooperation performance, there are
still limitations in various aspects. To simulate the PFC
for robust and adaptive partner modelling, we developed
LRM-MARL framework.
However, since the LRM in our ToM reasoner is a purely

a ToM reasoner within the

50
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Ablation results of different LRM scales for our ToM reasoner on COMA (left) and QMIX (right): Larger scales yield
(Colored

figures are available in the online version at
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text-based LRM, it lacks the ability to process multimod-
al information. Therefore, our framework requires the
design of critical environmental features and prompt en-
gineering in more complex environments to create more
practical knowledge templates.

While our ToM reasoner demonstrates improved reas-
oning ability, it is challenging to adapt quickly to the
variability of human behavior in complex environments.
The incorporation of diverse trajectory data, such as di-
verse human trajectory data, into the LRM training pro-
cess, could mitigate this limitation and improve its adapt-
ability. Therefore, constructing a partner modelling
framework with multimodal capabilities and faster adapt-
ation to changing partner behaviors is a promising direc-

tion for future research.

6 Conclusions

Inspired by the biological decision-making structure
and the reasoning process in the PFC, we have de-
veloped an LRM-improved MARL framework. This
framework aims for robust and adaptive partner model-
ling with ToM reasoning capabilities in cooperative
MARL. We incorporate our proposed framework into
various competitive MARL methods, achieving better re-
ward scores and sample efficiency. Further experimental
analyses reveal the adaptivity, robustness and generaliza-
tion of our proposed framework, indicating its potential
applicability to more complex tasks. We also discuss the
limitations of our LRM-MARL framework and propose
possible solutions as future research directions.
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